Machine Learning

What is Auto ML, and why does it matter?

by
Jon Reilly
,
October 22, 2020

Auto ML is short for Automated Machine Learning 

Auto ML is the set of software and user interfaces that bridge the gap between data scientists and the rest of us. Today only a few elite companies are taking real advantage of AI - and the list does not stretch far beyond the FAANGs (Facebook, Apple, Amazon, Netflix, Google). 

There is a good reason that AI adoption has not spread far and wide - it’s cutting edge math and software. The emphasis here is on the word science in data science, and the density of PhDs is higher than almost any other job category. Research by Element AI and NYT found only around 22 thousand AI engineers in the workforce. To put that in perspective, Software Engineers are in chronic short supply, and there are an estimated 22 million of them (1000x). 

So there is a massive mismatch between the people who can deliver AI solutions and hundreds of millions of business professionals who have applications that would substantially benefit from machine learning. The McKinsey Global Institute Analysis found this mismatch locks up a vast amount of potential value. 5.8 trillion dollars can be unlocked by AI - across a wide range of applications including marketing and sales (e.g. Lead Scoring), supply chain management, manufacturing, risk, and operations. So how do you close the gap between AI and business adoption? 

Enter Auto ML 

Like any technology working along the adoption curve, Auto ML promises to simplify machine learning so anyone can use it. There are three critical components needed to realize this promise. 

First, you need automated data ingestion. It needs to be incredibly easy to get data from your business into the model training process. That means integrating with today’s popular business systems and spreadsheet software. If relevant data lives in multiple places, you need to be able to merge it. Then the information needs to be automatically classified and correctly encoded for the model training process. 

Second, you need to automate model selection and training. There are many machine learning approaches - each working best on a specific type of problem. You a mechanism to find the best model - this is called Neural Architecture Search. Once you train a useful model, you need to communicate its performance so users can easily understand. 

Finally, it needs to be simple and easy to deploy in-line with your existing processes. Models need to monitor their performance over time and retrain as the business environment shifts, and new data becomes available. 

Akkio Auto ML

We are working to build the world’s most accessible Auto ML solution. From data to deployment, Akkio is committed to building a future where AI is so easy to use that everyone can unlock their data’s business value in a few clicks - no data science experience needed.

SIGN up

Grow Faster with No-Code ML

Now everyone can leverage the power of AI to grow their business.